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Abstract
Real networks often consist of local units which interact with each other via
asymmetric and heterogeneous connections. In this paper, the V-stability
problem is investigated for a class of asymmetric weighted coupled networks
with nonidentical node dynamics, which includes the unweighted network
as a special case. Pinning control is suggested to stabilize such a coupled
network. The complicated stabilization problem is reduced to measuring
the semi-negative property of the characteristic matrix which embodies not
only the network topology, but also the node self-dynamics and the control
gains. It is found that network stabilizability depends critically on the second
largest eigenvalue of the characteristic matrix. The smaller the second largest
eigenvalue is, the more the network is pinning controllable. Numerical
simulations of two representative networks composed of non-chaotic systems
and chaotic systems, respectively, are shown for illustration and verification.

PACS numbers: 05.45.Pq, 05.45.−a, 89.75.−K

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We live in a world of networks. In fact any large-scale and complicated system in nature
and societies can be modeled by a complex network, where vertices are the elements of the
system and edges represent the interactions between them. Examples include the WWW,
the Internet, metabolic networks, neural networks, food webs, electrical power grids, social
networks and many others. Recent technological advances have spurred a broad interest in
the study of complex networks, including modeling [1–6], synchronization [7–32], control
[33–41], epidemic dynamics [42, 43], etc.

Greatly differing from general dynamical systems, the collective behavior of a complex
network is highly determined not only by the self-dynamics governing the isolated nodes, but
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also by the overall topology of the network, between which the interplay gives rise to a host
of interesting effects. In particular, there are attempts to control the aggregate dynamics of
a complex network and guide it to a desired state, where pinning control was proposed as a
viable control scheme with minimal number of controllers placing at the nodes [33–41]. A
basic assumption characterizing most of the previous work on this issue [34–40] is that all
the network dynamical nodes are identical, coupling symmetrically with the same coupling
strength. However, in many circumstances this simplification does not match the peculiarities
of real networks with satisfaction. For instance, some phenomena such as the diversity of the
predator–prey interactions in food webs [44, 45], different capabilities of transmitting electric
signals in neural networks [46, 47], unequal traffic on the Internet [48] or of the passengers
in airline networks [49, 50] explain the existence of weighted wirings [51]. The distribution
of connection weights in realistic networks is often highly heterogeneous. A first weighting
approach to enhancing network synchronization was proposed in [52], where the effects of
variable weights depend essentially on the node degrees. Such a weighting procedure is
convenient in that by varying the weight parameter, it is possible to tune the coupling strength
among the network nodes according to their degrees. A new notion of Lyapunov V-stability
for a class of symmetric network with different nodes was first introduced in [41], where
the impact of the node self-dynamics on the network stability is shifted to the corresponding
passivity degree, a scalar parameter indicating the extent of the effort needed to stabilize the
node. In [34], a different strategy based on pinning control was addressed by introducing an
extra virtual node (or a reference node) into the original network. Therein, the arguments of the
master stability function approach can be immediately applied to the appropriately extended
network.

In this paper, the V-stability problem is further revisited for a class of asymmetric weighted
network with different node dynamics, which includes unweighted network as a special case.
In particular, the nodes in the network are not assumed to be identical. Pinning control
is applied to stabilize the network. It is found that the stabilizability depends critically on
the second largest eigenvalue of the characteristic matrix. The smaller the second largest
eigenvalue is, the more the network is pinning controllable. Note that differing from the
Laplacian or adjacent matrix characterizing the network topology in most previous eigenvalue-
based studies [7, 9, 11, 13, 21, 25], the characteristic matrix here encompasses not only the
network topology in terms of the connections and the weights over them, but also the node
self-dynamics and the control gains over them.

The remainder of the paper is outlined as follows. A new model of weighted network
composing of nonidentical nodes is presented and some preliminaries are introduced in
section 2. In section 3, the V-stability conditions are obtained, which guarantee that the
whole network can be pinned to its equilibrium by placing pinning controllers at a much small
fraction of nodes. Some numerical simulations for verifying the theoretical results are given
in section 4. Finally, section 5 concludes the investigation.

2. Model description and preliminaries

Consider a network consisting of N different nodes interacting through a diffusive-type
coupling, where each node is an m-dimensional dynamical system, described by

ẋi = fi(xi) − a

k
β

i

N∑
j=1,j �=i

lij�(xj − xi), i = 1, 2, . . . , N, (1)

where xi ∈ Rm represents the state vector of the ith node, and the function fi(·), governing the
self-dynamics of node i is capable of producing various rich dynamical behaviors, including
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periodic orbits and chaotic states. The parameter a is positive ruling the overall coupling
strength; ki is the out-degree of node i and β is a tunable weight parameter. Also, � ∈ Rm×m

is a constant matrix linking coupled variables, while the real matrix L = (lij )
N
i,j=1 is the usual

(symmetric) Laplacian matrix [10, 39, 52].
Recall that the parameter β = 0 recovers that the network is unweighted and undirected,

and the condition β �= 0 corresponds to a network with not only weighted but also directed
configuration. Although it is unnecessary to have a unique globally connected cluster to
control a network, while in each isolated cluster, at least one controller is present [35]. For the
sake of simplicity, this paper only focuses on the case that network (1) is diffusively connected
without isolated clusters. It then follows from the well-known Perron–Frobenius theorem that
the matrix L is irreducible.

For notational convenience, the original network (1) can be rewritten as

ẋi = fi(xi) + a

N∑
j=1

bij�xj , i = 1, 2, . . . , N, (2)

where B = (bij )
N
i,j=1 is a coupling matrix of the directed weighted network, defined by

bij = −lij
/
k

β

i . (3)

Note that the asymmetric matrix B is irreducible and negative semi-define since the network
considered here is diffusively connected. It follows that B has real eigenvalues and can be
diagonalizable [10, 39, 52].

Assume that all the network nodes have a common equilibrium x̄ ∈ Rm, satisfying
fi(x̄) = 0 for i = 1, 2, . . . , N . The task here is to stabilize network (2) onto the reference
state x1 = · · · = xN = x̄.

Before proceeding with the analytic treatment, the following assumption and lemma are
made throughout the paper.

Assumption 1 [41]. There exists a continuously differentiable Lyapunov function V (x)

satisfying V (x̄) = 0 with x̄ ∈ D, such that for each node function fi(xi), there is a scalar θi

called passivity degree holding

∂V (xi)

∂xi

(fi(xi) − θi�(x̄ − xi)) < 0,

(4)
∀xi ∈ Di, xi �= x̄, i = 1, 2, . . . , N,

where Di = {xi : ‖xi − x̄i‖ < α},α > 0,D = ⋃N
i=1 Di .

Lemma 1 [41]. Define D̄ = D1 × D2 × · · · × DN ⊆ RmN . Consider the following Lyapunov
function for the network (2):

VN(X) =
N∑

i=1

V (xi), X = (
xT

1 , xT
2 , . . . , xT

N

)T
. (5)

If there exists a function G(X) � 0 such that V̇N (X) < G(X) for all X ∈ D̄\{0}, then
network (2) is locally asymptotically stable about its equilibrium point. Moreover, the region
of attraction is given by

� = {X : VN(X) < r}, r = inf
X∈D̄

VN(X). (6)

In the case of D̄ = RmN , the above stability becomes global.
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3. Main results

The control objective can be achieved via pinning control. Without loss of generality,
let the first l (l � N) nodes be controlled with simple pinning controllers of the form
ui = −adi�(xi − x̄), i = 1, 2, . . . , l, where the feedback control gain di > 0 acting
on node i needs to be designed. Thus, the self-dynamics of the pinned nodes becomes
ẋi = fi(xi) − adi�(xi − x̄), i = 1, 2, . . . , l. It is worth noting here that the networks are
divided into two different layers of dynamical nodes: the un-pinned nodes and the pinned
ones. In particular, the latter play the role of network leaders leading the entire network
toward a given desired stationary state. The direct control action is propagated to the rest of
the network through the coupling among the nodes.

Naturally, the controlled network can be described by the following set of equations:

ẋi = fi(xi) − adi�(xi − x̄) + a

N∑
j=1

bij�xj , i = 1, 2, . . . , N, (7)

with di > 0 for i = 1, 2, . . . , l and di = 0 otherwise.
Based on the concept of extended network introduced in [34], let yi = xi for

i = 1, 2, . . . , N and yN+1 = ȳ = x̄ corresponding to θN+1 = 0. Then one has

ẏi = fi(yi) + a

N+1∑
j=1

Mij�yj , i = 1, 2, . . . , N + 1, (8)

where

M =




b11 − d1 b12 · · · b1N d1

b21 b22 − d2 · · · b2N d2

...
...

. . .
...

...

bN1 bN2 · · · bNN − dN dN

0 0 · · · 0 0




. (9)

Note that the (N + 1)-dimensional square matrix M is an asymmetric zero row-sum matrix,
with nonpositive values along the main diagonal. From the above it follows that B has real
eigenvalues and can be diagonalizable, which ensures the matrix M to be diagonalizable.
By graph theory and linear algebra, M is a negative semi-define matrix with a single zero
eigenvalue [34].

Remark 1. The desired common state x̄ is given by the state of an extra virtual node, indexed by
N +1, which is added to the original network. The purpose of introducing the virtual node is to
ensure some existing approaches can be immediately applied to equation (8). In what follows,
the stability problem of the extended network (8) about Ȳ = (ȳT , ȳT , . . . , ȳT )T ∈ Rm(N+1) is
investigated in detail.

Theorem 1. Assume that there exist functions V (yi) = 1
2yT

i Qyi , i = 1, 2, . . . , N + 1, with Q

being a symmetric and positive definite matrix, satisfying assumption 1 with passivity degree
value θi , such that the following inequality holds:

Q� + �T Q � 0. (10)

Then, the controlled network (7) is V-stable if the following inequality is satisfied:

−� + 1
2a(M + MT ) � 0, (11)
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where � = diag(θ1, θ2, . . . , θN+1) ∈ R(N+1)×(N+1). Moreover, if D̄ = Rm(N+1), the above
stability is global.

Proof. Without loss of generality, assume Ȳ = 0 and consider the following Lyapunov
function for the extended network (8):

VN+1(Y ) =
N+1∑
i=1

V (yi), Y = (
yT

1 , yT
2 , . . . , yT

N+1

)T
. (12)

Its time derivative along trajectory Y is given by

V̇N+1(Y ) =
N+1∑
i=1

∂V (yi)

∂yi

dyi

dt

=
N+1∑
i=1

∂V (yi)

∂yi

fi(yi) + a

N+1∑
i=1

∂V (yi)

∂yi

N+1∑
j=1

Mij�yj . (13)

It is easy to say that VN+1(Ȳ ) = 0 and V̇N+1(Ȳ ) = 0. Also, assumption 1 implies that, for
Y �= Ȳ , one has

V̇N+1(Y ) < G(Y ), (14)

where

G(Y) =
N+1∑
i=1

∂V (yi)

∂yi


−θi�yi + a

N+1∑
j=1

Mij�yj


 . (15)

Since ∂V (y)

∂y
= yT Q, the function G(Y) defined in (15) can be written as

G(Y) =
N+1∑
i=1

yT
i Q


−θi�yi + a

N+1∑
j=1

Mij�yj




= Y T (−� + aM) ⊗ (Q�)Y.

From (10) and (11), the matrix (−� + aM) ⊗ (Q�) is negative semi-define. And from
lemma 1, the controlled network (7) is V-stable. The proof is finished. �

Remark 2. In the following, the matrix C = −�+ 1
2a(M+MT ) is called characteristic matrix,

which differs from the Laplacian or adjacent matrix characterizing only the network topology
in most previous eigenvalue-based studies [7, 9, 11, 13, 21, 25]. The characteristic matrix
here contains not only the network topology in terms of the connections and the weights over
them, but also the node self-dynamics and the control gains over them. Under the proposed V-
stability scheme, the network stability problem is then shifted to measuring the semi-negative
property of the characteristic matrix. On the other hand, from assumption 1, the passivity
degree value is determined critically by the selection of the common Lyapunov function. This
is why the stability obtained here is called V-stability.

Remark 3. From condition (11), if all the node passivity degree values θi > 0 (i =
1, 2, . . . , N), the network itself is always stable without external control. It can also be seen
that the larger the passivity degree value θi , the more likely the condition (11) is held.
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2
1
.

1x x= 2 23x x= −

3 3sin( )x x= 4 4x x= −

.

. .

Figure 1. The topological structure and self-dynamics of network (16).
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Figure 2. The relation between the eigenvalues of the characteristic matrix and the weight
parameter β : γ ≈ 0 and a = 20. In (a), black circles are used for λ1 and red stars are used for λ2.

Remark 4. Although theorem 1 is given for such a diagonalizable weighted network, it can
be extended also to the case of non-diagonalizable networks which embeds at least an oriented
spanning tree [31, 32].
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Figure 3. The relation between the eigenvalues of the characteristic matrix and the overall coupling
strength a : γ ≈ 0 and β = 0.1.

4. Simulation study

4.1. Non-chaotic networks

To validate the theoretical results, consider a simple weighted network with four different
nodes, as shown in figure 1. The node local dynamics are given by [41]:

ẋ1 = x2
1 , ẋ2 = −3x2, ẋ3 = sin(x3), ẋ4 = −|x4|. (16)

Obviously, x̄ = 0 is the common equilibrium point. Note that the function in the fourth node
is not differential at the equilibrium, so any linearization method is not preferable. However,
the limitation of linearization is avoided by introducing an important scale, θ , as a measure of
the effect of the node self-dynamics on the network stability.

Take the common Lyapunov function V (X) = XT X, then the corresponding passivity
degrees of the four nodes are θ1 = −γ , θ2 = 2.999, θ3 = −1.001 and θ4 = −1.001 with γ > 0.
The corresponding feasible domains are D1 = {x1 : |x1| < γ } and D2 = D3 = D4 = R. The
region of attraction is then given by

� = {
(x1, x2, x3, x4) : x2

1 + x2
2 + x2

3 + x2
4 < γ 2

}
. (17)

Thus, the characteristic matrix of the uncontrolled network (16) can be rewritten as

Cu = −� + 1
2a(M + MT ), (18)
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0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

a

λ 2

β
β
β
β=0

β=0.17

Figure 4. The relation between the second largest eigenvalue of the characteristic matrix and the
overall coupling strength a. The legend is as follows: β = −1.4 (circles); β = −1 (squares);
β = −0.76 (diamonds); β = 0 (stars); β = 0.17 (dots).

where

� =




−γ 0 0 0 0
0 2.999 0 0 0
0 0 −1.001 0 0
0 0 0 −1.001 0
0 0 0 0 0




, M =




− 3
3β

1
3β

1
3β

1
3β 0

1
2β − 2

2β 0 1
2β 0

1
2β 0 − 2

2β
1

2β 0
1

3β
1

3β
1

3β − 3
3β 0

0 0 0 0 0




,

with the arranged eigenvalues denoted by λ1 � λ2 � λ3 � λ4 � λ5.
In the following, the effects of the four important parameters γ , a, β and d on the

eigenvalues of the characteristic matrix are investigated, respectively.
Firstly, consider the worst case, i.e., take the limiting value γ = 0. Fix a = 20 and

calculate the eigenvalues from β = −1.5 to 0.5, with step size 0.01, so as to obtain the
numerical results shown in figure 2. As β increases, first a decrease and then an increase of the
second largest eigenvalue is observed. In particular, −1.34 � β � 0.17 is required to stabilize
the network (16). Furthermore, a pronounced minimum for the second largest eigenvalue at
β = −0.76 is observed in figure 2(a).

Set β = 0.1 in the worst case of γ ≈ 0. Similarly, the relationship between the overall
coupling strength a and the eigenvalues is illustrated in figure 3. As β is fixed and a increases,
all the eigenvalues decrease. Eventually, all the eigenvalues become negative (except the
largest one is 0) when a > 5, at which the network will evolve to be locally stable from
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Figure 5. The relation between the eigenvalues of the characteristic matrix and γ : β = 0.1 and
a = 6.

unstable. Naturally, in such a case, the stronger the overall coupling strength a, the easier the
stabilization.

In figure 4, the second largest eigenvalue has been plotted versus the coupling strength a

corresponding to different β. It is intuitional that the larger the a, the easier the stabilization.
However, by increasing a, more complex behavior emerges: for some β, the second largest
eigenvalue does not always decrease as a grows. A supporting explanation is that positive
(negative) values of β indicate that the strengths of the couplings acting on each node decrease
(increase) with its degree. This indicates the existence of optimal ranges of values of β and a

in terms of the network stabilizability.
Fix β = 0.1 (corresponding to an asymmetric network), a = 6 and plot the changes of

the eigenvalues versus γ as shown in figure 5. Similar to figure 2, 0 < γ < 0.1 is needed to
stabilize. It then follows from (17) that the V-stability of network (16) can be ensured but only
in a small region of attraction: � = {X : ‖X‖ < 0.1}. To enlarge this region of attraction and
obtain high control efficiency, pinning control is the best choice.

Now, in the case often considered in the literature of all control gains being the same, i.e.,
d1 = d2 = · · · = dl = d. In view of γ = 10.0001, β = 0.1 and a = 6, design the control law
as u1 = −a dx1. The relation between the eigenvalues of the characteristic matrix and the
control gain d is given in figure 6. It is clear that the eigenvalues do not increase as d increases
and the aim state can be stabilized if d � 1.7. Figure 7 shows the evolution process of the
network state. The network (16) diverges from the initial state X(0) = (0, 0, 10, 0)T without
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Figure 6. The relation between the eigenvalues of the characteristic matrix and the control gain
d : γ = 10.0001, β = 0.1 and a = 6.
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Figure 7. The evolution of network states with initial state X(0) = (0, 0, 10, 0)T : the red lines
denote the state without control, the blue and black lines represent the states with the control gain
d = 2 and d = 10, respectively.

control but converges quickly to the origin after control. It is concluded that increasing the
feedback gain can considerably enhance the controlling efficiency. That is to say, the larger
the control gain is, the better the network is stabilized.
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Figure 8. Specifically pinning the ‘biggest’ Lorenz node of out-degree 20 in a 50-node weighted
random network: parts (a)–(d) are stabilizing phase trajectories with different coupling strengths.
(a) a = 100, d = 100, (b) a = 110, d = 100. (The red lines denote the states of Lorenz nodes and
black lines represent Chen nodes. These notations are valid for all the following figures.)

Motivated by the above analysis, for given node dynamics of a linearly weighted coupled
network, three key factors influencing the stabilizability are the overall coupling strength a,
the weight parameter β and the feedback control gain d. The larger the d, the more stabilizable
the network. Also there exist optimal ranges of values of β and a such that the second largest
eigenvalue of the characteristic matrix, λ2, is minimal. The λ2 is directly determined by these
three important parameters. On the other hand, for a given topology network, the passivity
degree θ and the control gain d are the significant factors influencing the stabilizability.
The larger the θ and d, the easier the stabilization. The λ2 is directly dominated by these
two important parameters. In sum, the eigenvalue λ2 determines the stabilizability of the
network. No matter what the network is, the smaller the λ2 is, the more the network is pinning
controllable.

4.2. Chaotic networks

In this subsection, chaotic network is simulated to further illustrate the proposed V-stability
scheme.

Consider a 50-node weighted random network consisting of two kinds of node self-
dynamics: the Lorenz system L(x) [53] and the Chen system C(x) [54], where

L(x) :




ẋ1

ẋ2

ẋ3


 =




αL(x2 − x1)

γLx1 − x2 − x1x3

x1x2 − βLx3


, (19)

C(x) :




ẋ1

ẋ2

ẋ3


 =




αC(x2 − x1)

(γC − αC)x1 + γCx2 − x1x3

x1x2 − βCx3


. (20)

When αL = 10, βL = 8/3 and γL = 28, the Lorenz system is in a chaotic state, so is the
Chen system with αC = 35, βC = 3 and γC = 28. The number of Lorenz-type nodes is
the same as the Chen-type nodes. Consider β = 0.1, � = diag(0, 1, 1) and V (x) = xT Px

with P = diag(0.1, 1, 1). From assumption 1, one has θL = −29 and θC = −2 regarding
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Figure 9. Specifically pinning five ‘biggest’ Lorenz nodes of out-degrees 20, 19, 17, 11 and 10
in the same 50-node network: parts (a) and (b) are stabilizing phase trajectories with different
coupling strengths. (a) a = 30, d = 100, (b) a = 40, d = 100.

the common equilibrium x̄ = [0, 0, 0]T . The initial values of the network are in the uniform
distribution on the interval (0, 1).

Figure 8 shows the stabilization process with the ‘biggest’ Lorenz node pinned, which
has out-degree 20. According to theorem 1, when the controller with feedback gain d = 100
is used, the corresponding stable threshold of the overall coupling strength a is 64.

Figure 9 shows the same stabilization process with five ‘biggest’ Lorenz nodes pinned,
which have out-degrees 20, 19, 17, 11 and 10, respectively, leading to a smaller threshold for
the overall coupling strength a, 20.4, with the same control gain d = 100.

It can be observed that increasing the overall coupling strength a and the pinning fraction
δ will accelerate the convergence of the network stabilization.

5. Conclusions

In this paper, a new model of weighted coupled network with different nodes has been
introduced and studied, and the V-stability problem of such a network has been investigated
by pinning a tiny portion of nodes with negative feedback controllers. Under the V-stability
framework, the network stability is converted to determining the semi-negative definiteness of
one simple characteristic matrix which characterizes the node dynamics and the topology of the
extended network. Furthermore, the impact of the node self-dynamics on the network stability
is shifted to the corresponding passivity degree, so the node function is only bounded without
the requirement of differentiability. It is also shown that the second largest eigenvalue of the
characteristic matrix determines the stabilizability of the network. The smaller the second
largest eigenvalue is, the more the network is pinning controllable. Note that although the
stability result obtained is given for a diagonalizable weighted network, it can be extended also
to the case of non-diagonalizable networks which embeds at least an oriented spanning tree.
Two representative examples are simulated, using non-chaotic systems and chaotic systems,
respectively, as the nodes of the dynamical network with non-uniform coupling strengths,
which demonstrate the effectiveness of the proposed V-stability criterion and stabilization
scheme.
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[11] Lü J, Yu X and Chen G 2004 Chaos synchronization of general complex dynamical networks Physica

A 334 281–302
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